English

∫ π 2 0 Tan X 1 + M 2 Tan 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
Sum

Solution

\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[= \int_0^\frac{\pi}{2} \frac{\frac{\sin x}{\cos x}}{1 + m^2 \frac{\sin^2 x}{\cos^2 x}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin x\cos x}{\cos^2 x + m^2 \sin^2 x}dx\]

Put

\[\cos^2 x + m^2 \sin^2 x = z\]

\[\therefore 2\cos x\left( - \sin x \right)dx + m^2 \times 2\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow 2\left( m^2 - 1 \right)\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow \sin x\cos\ x\ dx = \frac{dz}{2\left( m^2 - 1 \right)}\]

When

\[x \to 0, z \to 1\]
\[\left( z = \cos^2 x + m^2 \sin^2 x = 1 + m^2 \times 0 = 1 \right)\]

When

\[x \to \frac{\pi}{2}, z \to m^2\]
\[\left( z = \cos^2 x + m^2 \sin^2 x = 0 + m^2 \times 1 = m^2 \right)\]

\[\therefore I = \frac{1}{2\left( m^2 - 1 \right)} \int_1^{m^2} \frac{dz}{z}\]
\[ = \left.\frac{1}{2\left( m^2 - 1 \right)} \log z\right|_1^{m^2} \]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( \log m^2 - \log1 \right)\]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( 2\log\left| m \right| - 0 \right)\]
\[ = \frac{\log\left| m \right|}{m^2 - 1}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 57 | Page 40

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×