Advertisements
Advertisements
Question
Solution
\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin x\cos x}{\cos^2 x + m^2 \sin^2 x}dx\]
Put
\[\therefore 2\cos x\left( - \sin x \right)dx + m^2 \times 2\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow 2\left( m^2 - 1 \right)\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow \sin x\cos\ x\ dx = \frac{dz}{2\left( m^2 - 1 \right)}\]
When
When
\[\therefore I = \frac{1}{2\left( m^2 - 1 \right)} \int_1^{m^2} \frac{dz}{z}\]
\[ = \left.\frac{1}{2\left( m^2 - 1 \right)} \log z\right|_1^{m^2} \]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( \log m^2 - \log1 \right)\]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( 2\log\left| m \right| - 0 \right)\]
\[ = \frac{\log\left| m \right|}{m^2 - 1}\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^3/(x + 1)` is equal to ______.