English

∞ ∫ 0 X ( 1 + X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

Sum

Solution

\[I=\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

Using partial fraction,

\[\frac{x}{(1 + x)(1 + x^2 )}\frac{A}{1 + x} + \frac{Bx + C}{1 + x^2}\]

\[x = A(1 + x^2 ) + (Bx + C)(1 + x)\]

\[x = A + A x^2 + Bx + B x^2 + C + Cx\]

\[B + C = 1\]

\[A + C = 0\]

\[A + B = 0\]

\[so, A = \frac{- 1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]

Putting the values of A, B and C we get

\[\frac{\frac{- 1}{2}}{1 + x} + \frac{\frac{1}{2}x + \frac{1}{2}}{1 + x^2}\]

\[ = \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]

\[\text{Therefore, }I = \int_0^\infty \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]

\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \int_0^\infty \left[ \frac{x}{1 + x^2} + \frac{1}{1 + x^2} \right]\]

\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2 \times 2} \int_0^\infty \left[ \frac{2x}{1 + x^2} \right] + \frac{1}{2} \int_0^\infty \frac{1}{1 + x^2}\]

\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{4} \left[ \log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \times \frac{1}{2} \left[ log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2} \left[ \log\frac{\sqrt{x^2 + 1}}{x + 1} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2} \left[ log\frac{\sqrt{1 + \frac{1}{x^2}}}{1 + \frac{1}{x}} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2}\left[ 0 \right] + \frac{1}{2}\left[ ta n^{- 1} \infty - ta n^{- 1} 0 \right]\]

`I=pi/4`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 15 | Page 121

RELATED QUESTIONS

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×