Advertisements
Advertisements
Question
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Solution
\[I=\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Using partial fraction,
\[\frac{x}{(1 + x)(1 + x^2 )}\frac{A}{1 + x} + \frac{Bx + C}{1 + x^2}\]
\[x = A(1 + x^2 ) + (Bx + C)(1 + x)\]
\[x = A + A x^2 + Bx + B x^2 + C + Cx\]
\[B + C = 1\]
\[A + C = 0\]
\[A + B = 0\]
\[so, A = \frac{- 1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]
Putting the values of A, B and C we get
\[\frac{\frac{- 1}{2}}{1 + x} + \frac{\frac{1}{2}x + \frac{1}{2}}{1 + x^2}\]
\[ = \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]
\[\text{Therefore, }I = \int_0^\infty \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]
\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \int_0^\infty \left[ \frac{x}{1 + x^2} + \frac{1}{1 + x^2} \right]\]
\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2 \times 2} \int_0^\infty \left[ \frac{2x}{1 + x^2} \right] + \frac{1}{2} \int_0^\infty \frac{1}{1 + x^2}\]
\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{4} \left[ \log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \times \frac{1}{2} \left[ log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{1}{2} \left[ \log\frac{\sqrt{x^2 + 1}}{x + 1} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{1}{2} \left[ log\frac{\sqrt{1 + \frac{1}{x^2}}}{1 + \frac{1}{x}} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]
\[I = \frac{1}{2}\left[ 0 \right] + \frac{1}{2}\left[ ta n^{- 1} \infty - ta n^{- 1} 0 \right]\]
`I=pi/4`
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`