English

Π / 2 ∫ 0 Cos 2 X Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]

Sum

Solution

We have,

\[I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\sin x + \cos x} d x ...............(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\cos x + \sin x} dx .................(2)\]

Adding (1) and (2)

\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\cos^2 x}{\sin x + \cos x} + \frac{\sin^2 x}{\cos x + \sin x} \right]dx\]

\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} \right]dx\]

\[= - \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{\tan^2 \frac{x}{2} - 2\tan\frac{x}{2} - 1} dx\]

\[ = - \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{\tan^2 \frac{x}{2} - 2\tan\frac{x}{2} - 1} dx\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]

\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to 1\]

\[\therefore 2I = - 2 \int_0^1 \frac{dt}{t^2 - 2t - 1}\]

\[ \Rightarrow I = - \int_0^1 \frac{dt}{\left( t - 1 \right)^2 - \left( \sqrt{2} \right)^2}\]

\[ = - \frac{1}{2\sqrt{2}} \left[ \log\left| \frac{t - 1 - \sqrt{2}}{t - 1 + \sqrt{2}} \right| \right]_0^1 \]

\[ = - \frac{1}{2\sqrt{2}}\left[ \log\left| - 1 \right| - \log\left| \frac{- 1 - \sqrt{2}}{- 1 + \sqrt{2}} \right| \right]\]

\[ = - \frac{1}{2\sqrt{2}}\left[ \log 1 - \log\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right]\]

\[= - \frac{1}{2\sqrt{2}}\left[ - \log\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right]\]

\[ = \frac{1}{2\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]

\[ = \frac{1}{2\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{\left( 2 - 1 \right)} \right]\]

\[ = \frac{1}{2\sqrt{2}}\log \left( \sqrt{2} + 1 \right)^2 \]

\[ = \frac{1}{2\sqrt{2}} \times 2 \log\left( \sqrt{2} + 1 \right)\]

\[ = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 48 | Page 122

RELATED QUESTIONS

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×