Advertisements
Advertisements
Question
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Solution
\[f\left( x \right) = \int_0^x t\sin\ tdt\]
\[ \Rightarrow f\left( x \right) = \left.{t\left( - \cos t \right)}\right|_0^x - \int_0^x \frac{d}{dt}\left( t \right) \times \left( - \cos t \right)dt\]
\[ \Rightarrow f\left( x \right) = - \left( x\cos x - 0 \right) + \int_0^x \cos t dt\]
\[ \Rightarrow f\left( x \right) = - x\cos x + \left.\sin t\right|_0^x\]
\[ \Rightarrow f\left( x \right) = - x\cos x + \sin x\]
Differentiating both sides with respect to x, we get
\[f'\left( x \right) = - \left[ x \times \left( - \sin x \right) + \cos x \times 1 \right] + \cos x\]
\[ \Rightarrow f'\left( x \right) = - \left( - x\sin x \right) - \cos x + \cos x\]
\[ \Rightarrow f'\left( x \right) = x\sin x\]
Thus, the value of \[f'\left( x \right)\] is `x sinx`.
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Write the coefficient a, b, c of which the value of the integral
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.