Advertisements
Advertisements
Question
Solution
\[Let\ x = a \tan\ t . Then, dx = a\ \sec^2 t\ dt\]
\[When\ x = 0, t = 0\ and\ x = a, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^a \frac{x}{\sqrt{a^2 + x^2}} d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{a \tan t}{\sqrt{a^2 + a^2 \tan^2 t}}a \sec^2 t\ d t\]
\[ = \int_0^\frac{\pi}{4} \frac{\left( a \tan t \right) a \sec^2 t}{a \sec t} dt\]
\[ = \int_0^\frac{\pi}{4} a \tan t \sec t\ dt\]
\[ = a \left[ \sec t \right]_0^\frac{\pi}{4} \]
\[ = a\left( \sqrt{2} - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`