English

Π / 2 ∫ 0 D X 4 Cos X + 2 Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]

Sum

Solution

\[\int_0^\frac{\pi}{2} \frac{1}{4\cos x + 2\sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{4 - 4 \tan^2 \frac{x}{2} + 4\tan\frac{x}{2}} d x\]
\[\text{Let }\tan\frac{x}{2} = t,\text{ then }\frac{1}{2}se c^2 \frac{x}{2} dx = dt\]
\[\text{When }x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[ = \frac{- 1}{4} \int_0^1 \frac{dt}{\left( t - \frac{1}{2} \right)^2 - \frac{5}{4}}\]
\[ = \frac{- 1}{4} \times \frac{- 4}{\sqrt{5}} \left[ \log\frac{2t - 1 - \sqrt{5}}{2t - 1 + \sqrt{5}} \right]_0^1 \]
\[ = \frac{1}{\sqrt{5}}\log\frac{\sqrt{5} + 1}{\sqrt{5} - 1}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 123]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 60 | Page 123

RELATED QUESTIONS

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×