Advertisements
Advertisements
Question
Options
- \[\ln\left( \frac{1}{3} \right)\]
- \[\ln\left( \frac{2}{3} \right)\]
- \[\ln\left( \frac{3}{2} \right)\]
- \[\ln\left( \frac{4}{3} \right)\]
Solution
`ln(3/2)`
\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . . . . . . . . + \frac{1}{2n + n} \right\}\]
\[ = \lim_{n \to \infty} \sum\nolimits_{r = 1}^n \frac{1}{2n + r}\]
\[ = {lim}_{n \to \infty} \frac{1}{n} \sum\nolimits_{r = 1}^n \frac{1}{2 + \frac{r}{n}}\]
\[let \frac{r}{n} = x\]
\[ = \int_0^\infty \frac{1}{2 + x} d x\]
\[ = \left[ \log\left( 2 + x \right) \right]_0^\infty \]
\[ = \log3 - \log2\]
\[ = log\frac{3}{2}\]
\[ = \ln\left( \frac{3}{2} \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f is an integrable function, show that
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is