Advertisements
Advertisements
प्रश्न
विकल्प
- \[\ln\left( \frac{1}{3} \right)\]
- \[\ln\left( \frac{2}{3} \right)\]
- \[\ln\left( \frac{3}{2} \right)\]
- \[\ln\left( \frac{4}{3} \right)\]
उत्तर
`ln(3/2)`
\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . . . . . . . . + \frac{1}{2n + n} \right\}\]
\[ = \lim_{n \to \infty} \sum\nolimits_{r = 1}^n \frac{1}{2n + r}\]
\[ = {lim}_{n \to \infty} \frac{1}{n} \sum\nolimits_{r = 1}^n \frac{1}{2 + \frac{r}{n}}\]
\[let \frac{r}{n} = x\]
\[ = \int_0^\infty \frac{1}{2 + x} d x\]
\[ = \left[ \log\left( 2 + x \right) \right]_0^\infty \]
\[ = \log3 - \log2\]
\[ = log\frac{3}{2}\]
\[ = \ln\left( \frac{3}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
Γ(n) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.