Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int_0^\pi \log\left( 1 - \cos x \right) d x\]
\[ = \int_0^\pi \log\left( 2 \sin^2 \frac{x}{2} \right) dx\]
\[ = \int_0^\pi \log2 dx + 2 \int_0^\pi \log \sin\frac{x}{2} dx\]
\[ Let, t = \frac{x}{2} \text{in the secong integral . then } dt = \frac{1}{2}dx\]
\[\text{When }x \to 0 ; t \to 0\text{ and } x \to \pi ; t \to \frac{\pi}{2}\]
\[I = \log2 \left[ x \right]_0^\pi + 4 \int_0^\frac{\pi}{2} \log \sin t dt\]
\[ = \pi\ log2 + 4 \times \left( - \frac{\pi}{2}\log2 \right) ...............\left[\text{Where, }\int_0^\frac{\pi}{2} \log \sin t dt = - \frac{\pi}{2}\log2 \right]\]
\[ = - \pi \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`