Advertisements
Advertisements
प्रश्न
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
उत्तर
\[\int_\frac{- \pi}{4}^\frac{\pi}{4} \left| \tan x \right| d x\]
\[ = \int_\frac{- \pi}{4}^0 - \tan x dx + \int_0^\frac{\pi}{4} \tan x dx\]
\[ = \left[ \log \left( \cos x \right) \right]_\frac{- \pi}{4}^0 + \left[ - \log \left( \cos x \right) \right]_0^\frac{\pi}{4} \]
\[ = - \log\frac{1}{\sqrt{2}} - \log\frac{1}{\sqrt{2}}\]
\[ = 2\log\sqrt{2}\]
\[ = \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.