Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x\frac{1}{\sqrt{2}} - \cos x\frac{1}{\sqrt{2}} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x \cos\frac{\pi}{4} - \cos x \sin\frac{\pi}{4} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin\left( x - \frac{\pi}{4} \right) \right| d x\]
\[We have, \]
\[\left| \sin\left( x - \frac{\pi}{4} \right) \right| = \begin{cases} - \sin\left( x - \frac{\pi}{4} \right),& 0 \leq x \leq \frac{\pi}{4}\\ \sin\left( x - \frac{\pi}{4} \right),& \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\end{cases}\]
\[ \therefore \int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x = \sqrt{2} \int_0^\frac{\pi}{4} - \sin\left( x - \frac{\pi}{4} \right) d x + \sqrt{2} \int_\frac{\pi}{4}^\frac{\pi}{2} \sin\left( x - \frac{\pi}{4} \right) d x\]
\[ = \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_0^\frac{\pi}{4} - \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ = \sqrt{2}\left[ \cos \left( 0 \right) - \cos\left( - \frac{\pi}{4} \right) \right] - \sqrt{2}\left[ \cos\left( \frac{\pi}{4} \right) - \cos \left( 0 \right) \right]\]
\[ = \sqrt{2}\left( 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1 \right)\]
\[ = \sqrt{2}\left( 2 - \frac{2}{\sqrt{2}} \right)\]
\[ = 2\sqrt{2} - 2\]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Find: `int logx/(1 + log x)^2 dx`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`