हिंदी

Π / 2 ∫ 0 | Sin X − Cos X | D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]

योग

उत्तर

\[\int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x\frac{1}{\sqrt{2}} - \cos x\frac{1}{\sqrt{2}} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x \cos\frac{\pi}{4} - \cos x \sin\frac{\pi}{4} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin\left( x - \frac{\pi}{4} \right) \right| d x\]
\[We have, \]
\[\left| \sin\left( x - \frac{\pi}{4} \right) \right| = \begin{cases} - \sin\left( x - \frac{\pi}{4} \right),& 0 \leq x \leq \frac{\pi}{4}\\ \sin\left( x - \frac{\pi}{4} \right),& \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\end{cases}\]
\[ \therefore \int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x = \sqrt{2} \int_0^\frac{\pi}{4} - \sin\left( x - \frac{\pi}{4} \right) d x + \sqrt{2} \int_\frac{\pi}{4}^\frac{\pi}{2} \sin\left( x - \frac{\pi}{4} \right) d x\]
\[ = \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_0^\frac{\pi}{4} - \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ = \sqrt{2}\left[ \cos \left( 0 \right) - \cos\left( - \frac{\pi}{4} \right) \right] - \sqrt{2}\left[ \cos\left( \frac{\pi}{4} \right) - \cos \left( 0 \right) \right]\]
\[ = \sqrt{2}\left( 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1 \right)\]
\[ = \sqrt{2}\left( 2 - \frac{2}{\sqrt{2}} \right)\]
\[ = 2\sqrt{2} - 2\]
\[ = 2\left( \sqrt{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 31 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_a^b e^x dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Find: `int logx/(1 + log x)^2 dx`


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×