Advertisements
Advertisements
प्रश्न
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
उत्तर
Let x2 = t.
Then `x^2/(x^4 + x^2 - 2) = "t"/("t"^2 + "t" - 2)`
= `"t"/(("t" + 2)("t" - 1))`
= `"A"/("t" + 2) + "B"/("t" - 1)`
So t = A(t – 1) + B(t + 2)
Comparing coefficients, we get A = `2/3`, B = `1/3`.
So `x^2/(x^4 + x^2 - 2) = 2/3 1/(x^2 + 2) + 1/3 1/(x^2 - 1)`
Therefore, `int x^2/(x^4 + x^2 - 2) "d"x`
= `2/3 int 1/(x^2 + 2) "d"x + 1/3 int "dx"/(x^2 - 1)`
= `2/3 1/sqrt(2) tan^-1 x/sqrt(2) + 1/6 log |(x + 1)/(x + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`