Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \frac{\cos x}{1 + \sin^2 x} d x\]
\[Let \sin x = t,\text{ then }\cos x dx = dt\]
\[\text{When }x \to 0 ; t \to 0\]
\[\text{And }x \to \frac{\pi}{2}; t \to 1\]
Therefore the integral becomes
\[ \int_0^1 \frac{dt}{1 + t^2}\]
\[ = \left[ \tan^{- 1} x \right]_0^1 \]
\[ = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Find: `int logx/(1 + log x)^2 dx`