हिंदी

Evaluate : π ∫ 0 / 4 Sin X + Cos X 16 + 9 Sin 2 X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .

उत्तर

Let

\[I = \int_0^{{\pi}/{4}}\frac{\sin x + \cos x}{16 + 9\sin2x}dx\]

Put – cosx + sinx = t    .....(1)
Then,
(sin x + cos x) dx = dt
As, x → 0, t → −1
Also, x → \[\frac{\pi}{4}\] t → 0

Squaring (1) both sides, we get
cos2x + sin2x – 2cosx sinx = t2
⇒ 1 – sin2x = t2
⇒ sin 2x = 1 – t2
Substituting these values, we get

\[I = \int_{- 1}^0 \frac{dt}{16 + 9 \left( 1 - t^2 \right)}\]

\[ = \int_{- 1}^0 \frac{dt}{25 - 9 t^2}\]

\[ = \frac{1}{9} \int_{- 1}^0 \frac{dt}{\left( \frac{5}{3} \right)^2 - t^2}\]

\[ = \frac{1}{9} \left[ \frac{1}{2a}\log \left| \frac{a + t}{a - t} \right| \right]_{- 1}^0 \text { where a } = \frac{5}{3}\]

\[ = \frac{1}{9} \left[ \frac{3}{2\left( 5 \right)}\log \left| \frac{\frac{5}{3} + t}{\frac{5}{3} - t} \right| \right]_{- 1}^0 \]

\[ = \frac{1}{9} \left[ \frac{3}{10}\left\{ \log 1 - \log \frac{1}{4} \right\} \right]^{- 1} \]

\[ = \frac{3}{90}\left( - \log \frac{1}{4} \right) = \frac{1}{30} \log 4\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) All India Set 3

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×