Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
उत्तर
Let
\[I = \int_0^{{\pi}/{4}}\frac{\sin x + \cos x}{16 + 9\sin2x}dx\]
Put – cosx + sinx = t .....(1)
Then,
(sin x + cos x) dx = dt
As, x → 0, t → −1
Also, x → \[\frac{\pi}{4}\] t → 0
Squaring (1) both sides, we get
cos2x + sin2x – 2cosx sinx = t2
⇒ 1 – sin2x = t2
⇒ sin 2x = 1 – t2
Substituting these values, we get
\[I = \int_{- 1}^0 \frac{dt}{16 + 9 \left( 1 - t^2 \right)}\]
\[ = \int_{- 1}^0 \frac{dt}{25 - 9 t^2}\]
\[ = \frac{1}{9} \int_{- 1}^0 \frac{dt}{\left( \frac{5}{3} \right)^2 - t^2}\]
\[ = \frac{1}{9} \left[ \frac{1}{2a}\log \left| \frac{a + t}{a - t} \right| \right]_{- 1}^0 \text { where a } = \frac{5}{3}\]
\[ = \frac{1}{9} \left[ \frac{3}{2\left( 5 \right)}\log \left| \frac{\frac{5}{3} + t}{\frac{5}{3} - t} \right| \right]_{- 1}^0 \]
\[ = \frac{1}{9} \left[ \frac{3}{10}\left\{ \log 1 - \log \frac{1}{4} \right\} \right]^{- 1} \]
\[ = \frac{3}{90}\left( - \log \frac{1}{4} \right) = \frac{1}{30} \log 4\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is