Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 x \tan^{- 1} x\ d\ x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \frac{x^2}{1 + x^2} dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \left( \frac{1 + x^2}{1 + x^2} - \frac{1}{1 + x^2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \left[ x - \tan^{- 1} x \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{8} - 0 - \frac{1}{2}\left( 1 - \frac{\pi}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4} - \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.