हिंदी

1 ∫ 0 X Tan − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

उत्तर

\[Let\ I = \int_0^1 x \tan^{- 1} x\ d\ x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \frac{x^2}{1 + x^2} dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \left( \frac{1 + x^2}{1 + x^2} - \frac{1}{1 + x^2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \left[ x - \tan^{- 1} x \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{8} - 0 - \frac{1}{2}\left( 1 - \frac{\pi}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4} - \frac{1}{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 32 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×