Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = a, b = b, f\left( x \right) = x, h = \frac{b - a}{n}\]
Therefore,
\[I = \int_a^b x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ a + \left( a + h \right) + \left( a + 2h \right) + . . . . . . . . . . + \left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ na + h\left\{ 1 + 2 + 3 + . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ na + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{h \to 0} \frac{b - a}{n}\left[ na + \frac{\left[ b - a \right]\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{h \to 0} \left[ \left( b - a \right)a + \frac{\left( b - a \right)\left( b - a - h \right)}{2} \right]\]
\[ = \left( b - a \right)a + \frac{\left( b - a \right)^2}{2}\]
\[ = \frac{2ab - 2 a^2 + b^2 + a^2 - 2ab}{2}\]
\[ = \frac{b^2 - a^2}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`