Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi \frac{1}{3 + 2 \sin x + \cos x} d x . Then, \]
\[I = \int_0^\pi \frac{1}{3 + 2\left( \frac{2 \tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{2 \tan^2 \frac{x}{2} + 4 \tan \frac{x}{2} + 4} dx\]
\[Let \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \pi, t = \infty \]
\[ \therefore I = \int_0^\infty \frac{2 dt}{2 t^2 + 4t + 4}\]
\[ \Rightarrow I = \int_0^\infty \frac{dt}{\left( t + 1 \right)^2 + 1}\]
\[ \Rightarrow I = \left[ \tan^{- 1} \left( t + 1 \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{2} - \frac{\pi}{4}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`