Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
योग
उत्तर
`int_0^oo "e"^(-4x) x^4 "d"x = int_0^oo x^"n" "e"^(-ax) "d"x`
`("n"!)/("a"^("n" + 1))`
Where n = 4
a = 4
So the integral becomes `(4!)/4^5 = (4 xx 3 xx 2)/(4 xx 4 xx 4 xx 4 xx 4)`
= `3/128`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Integral Calculus – 1 - Exercise 2.10 [पृष्ठ ५१]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]
\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]
\[\int\limits_0^\pi x \sin^3 x\ dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
The value of `int_2^3 x/(x^2 + 1)`dx is ______.