Advertisements
Advertisements
Question
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Sum
Solution
`int_0^oo "e"^(-4x) x^4 "d"x = int_0^oo x^"n" "e"^(-ax) "d"x`
`("n"!)/("a"^("n" + 1))`
Where n = 4
a = 4
So the integral becomes `(4!)/4^5 = (4 xx 3 xx 2)/(4 xx 4 xx 4 xx 4 xx 4)`
= `3/128`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
Chapter 2: Integral Calculus – 1 - Exercise 2.10 [Page 51]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} x\ dx\]
\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]
\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]
\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\] is equal to ______.