Advertisements
Advertisements
Question
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Sum
Solution
`int_0^oo "e"^(-mx) x^6 "d"x = int_0^oo x^"n""e"^(-"a"x) "d"x`
= `("n"!)/("a"^("n" + 1)`
Where n = 6
a = m
So the integral becomes = `(6!)/(3^(6 + 1)) = (6!)/"m"^7`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
Chapter 2: Integral Calculus – 1 - Exercise 2.10 [Page 51]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]
\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`