Advertisements
Advertisements
Question
Solution
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here, }a = 1, b = 3, f\left( x \right) = 2 x^2 + 5x, h = \frac{3 - 1}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_1^3 \left( 2 x^2 + 5x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 2 + 5 \right) + \left\{ 2 \left( 1 + h \right)^2 + 5\left( 1 + h \right) \right\} + . . . . . . . . . . . . . . . + \left\{ 2 \left( 1 + \left( n - 1 \right)h \right)^2 + 5\left( 1 + \left( n - 1 \right)h \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2\left\{ 1^2 + \left( 1 + h \right)^2 + . . . . . . . . . . . . + \left\{ 1 + \left( n - 1 \right)h \right\}^2 \right\} + 5\left\{ 1 + \left( 1 + h \right) + \left( 1 + 2h + . . . . . . . . + \left( 1 + \left( n - 1 \right)h \right) \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + 2 h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + 4h\left\{ 1 + 2 + . . . . . . + \left( n - 1 \right) \right\} + 5n + 5h\left\{ 1 + 2 + . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 7n + 2 h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 9h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ 7n + \frac{4\left( n - 1 \right)\left( 2n - 1 \right)}{3n} + 9n - 9 \right]\]
\[ = \lim_{n \to \infty} 2\left[ 16 + \frac{4}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{9}{n} \right]\]
\[ = 32 + \frac{16}{3}\]
\[ = \frac{112}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`