Advertisements
Advertisements
Question
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Solution
Put x2 = t
Then 2x dx = dt.
Now I = `int (x^3"d"x)/(x^4 + 3x^2 + 2)`
= `1/2 int "tdt"/("t"^2 + 3"t" + 2)`
Consider `"t"/("t"^2 + 3"t" + 2) = "A"/("t" + 1) + "B"/("t" + 2)`
Comparing coefficient, we get A = –1, B = 2.
Then I = `1/2[2 int "dt"/("t" + 2) - int "dt"/("t" + 1)]`
= `1/2 [2log|"t" + 2| - log|"t" + 1|]`
= `log|(x^2 + 2)/sqrt(x^2 + 1)| + "C"`
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.