Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[ = \lim_{h \to 0} h\left[ f\left( 2 \right) + f\left( 2 + h \right) + . . . + f\left( 2 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 2 - 2 \right) + \left( 2 - h - 2 \right) + . . . + \left( 2 - \left( n - 1 \right)h - 2 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ - h\left( 1 + 2 + 3 + . . . + \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ - 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ - 2n + 2 \right]\]
\[ = \lim_{n \to \infty} 2\left( - 2 + \frac{2}{n} \right)\]
\[ = - 4\]
APPEARS IN
RELATED QUESTIONS
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.