Advertisements
Advertisements
Question
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
Solution
\[\int_0^1 \frac{1 - x}{1 + x} dx\]
\[ = \int_0^1 \frac{1 - x - 1 + 1}{1 + x} d x\]
\[ = \int_0^1 \frac{2 - \left( x + 1 \right)}{1 + x} d x\]
\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 \frac{1 + x}{1 + x}dx\]
\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 dx\]
\[ = 2 \left[ \log\left( 1 + x \right) \right]_0^1 - \left[ x \right]_0^1 \]
\[ = 2\log2 - 1\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate :
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`