Advertisements
Advertisements
Question
Solution
\[\text{Let I }= \int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
Put
When `xrarr1/2, thetararrpi/6`
\[\therefore I = \int_0^\frac{\pi}{6} \frac{1}{\left( 1 + \sin^2 \theta \right)\cos\theta} \times \cos\theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{1}{1 + \sin^2 \theta}d\theta\]
Dividing numerator and denominator by `cos^2theta, `we have
\[I = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{\sec^2 \theta + \tan^2 \theta}d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{1 + 2 \tan^2 \theta}d\theta\]
Now, put `tantheta = u`
`therefore sec^2thetad theta=du`
When `thetararr0, u rarr0`
When \[\theta \to \frac{\pi}{6}, u \to \frac{1}{\sqrt{3}}\]
\[\therefore I = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + 2 u^2}\]
\[ = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + \left( \sqrt{2}u \right)^2}\]
\[ = \left.\frac{\tan^{- 1} \sqrt{2}u}{\sqrt{2}}\right|_0^\frac{1}{\sqrt{3}} \]
\[ = \frac{1}{\sqrt{2}}\left( \tan^{- 1} \frac{\sqrt{2}}{\sqrt{3}} - 0 \right)\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \sqrt{\frac{2}{3}}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.