English

∫ 1 2 0 1 ( 1 + X 2 ) √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
Sum

Solution

\[\text{Let I }= \int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

Put

\[x = \sin\theta\]
`therefore dx=costheta d theta`
When \[x \to 0, \theta \to 0\]

When `xrarr1/2, thetararrpi/6`

\[\therefore I = \int_0^\frac{\pi}{6} \frac{1}{\left( 1 + \sin^2 \theta \right)\cos\theta} \times \cos\theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{1}{1 + \sin^2 \theta}d\theta\]

Dividing numerator and denominator by `cos^2theta, `we have

\[I = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{\sec^2 \theta + \tan^2 \theta}d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{1 + 2 \tan^2 \theta}d\theta\]

Now, put `tantheta = u`

`therefore sec^2thetad theta=du`

When `thetararr0, u rarr0`

When \[\theta \to \frac{\pi}{6}, u \to \frac{1}{\sqrt{3}}\]

\[\therefore I = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + 2 u^2}\]
\[ = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + \left( \sqrt{2}u \right)^2}\]
\[ = \left.\frac{\tan^{- 1} \sqrt{2}u}{\sqrt{2}}\right|_0^\frac{1}{\sqrt{3}} \]
\[ = \frac{1}{\sqrt{2}}\left( \tan^{- 1} \frac{\sqrt{2}}{\sqrt{3}} - 0 \right)\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \sqrt{\frac{2}{3}}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 58 | Page 40

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×