Advertisements
Advertisements
Question
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Solution
\[Let I = \int_0^\pi \frac{x}{a^2 - \cos^2 x} d x ..............(1)\]
\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 \left( \pi - x \right)} d x \]
\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 x} d x ...............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \frac{\pi}{a^2 - \cos^2 x} d x \]
\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{1}{a - cosx} + \frac{1}{a + cosx} \right] dx\]
\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{\sec^2 \frac{x}{2}}{\left( a - 1 \right) + \left( a + 1 \right) \tan^2 \frac{x}{2}} + \frac{\sec^2 \frac{x}{2}}{\left( a + 1 \right) + \left( a - 1 \right) \tan^2 \frac{x}{2}} \right]dx\]
\[Let, \tan\frac{x}{2} = t, then \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[2I = \frac{\pi}{a} \int_0^\infty \left[ \frac{1}{\left( a - 1 \right) + \left( a + 1 \right) t^2} + \frac{1}{\left( a + 1 \right) + \left( a - 1 \right) t^2} \right] dt\]
\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}} \left[ \tan^{- 1} \sqrt{\frac{a + 1}{a - 1}}t + \tan^{- 1} \sqrt{\frac{a - 1}{a + 1}}t \right]_0^\infty \]
\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ = \frac{\pi^2}{a\sqrt{\left( a^2 - 1 \right)}}\]
\[ \therefore I = \frac{\pi^2}{2a\sqrt{\left( a^2 - 1 \right)}}\]
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.