English

Π ∫ 0 X a 2 − Cos 2 X D X , a > 1 - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]

Sum

Solution

\[Let I = \int_0^\pi \frac{x}{a^2 - \cos^2 x} d x ..............(1)\]

\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 \left( \pi - x \right)} d x \]

\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 x} d x ...............(2)\]

Adding (1) and (2)

\[2I = \int_0^\pi \frac{\pi}{a^2 - \cos^2 x} d x \]

\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{1}{a - cosx} + \frac{1}{a + cosx} \right] dx\]

\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{\sec^2 \frac{x}{2}}{\left( a - 1 \right) + \left( a + 1 \right) \tan^2 \frac{x}{2}} + \frac{\sec^2 \frac{x}{2}}{\left( a + 1 \right) + \left( a - 1 \right) \tan^2 \frac{x}{2}} \right]dx\]

\[Let, \tan\frac{x}{2} = t, then \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]

\[2I = \frac{\pi}{a} \int_0^\infty \left[ \frac{1}{\left( a - 1 \right) + \left( a + 1 \right) t^2} + \frac{1}{\left( a + 1 \right) + \left( a - 1 \right) t^2} \right] dt\]

\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}} \left[ \tan^{- 1} \sqrt{\frac{a + 1}{a - 1}}t + \tan^{- 1} \sqrt{\frac{a - 1}{a + 1}}t \right]_0^\infty \]

\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]

\[ = \frac{\pi^2}{a\sqrt{\left( a^2 - 1 \right)}}\]

\[ \therefore I = \frac{\pi^2}{2a\sqrt{\left( a^2 - 1 \right)}}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 50 | Page 122

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

Γ(1) is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×