English

Evaluate d∫x2+xx4-9dx - Mathematics

Advertisements
Advertisements

Question

Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`

Sum

Solution

We have I = `int (x^2 + x)/(x^4 - 9) "d"x`

= `int x^2/(x^4 - 9) "d"x + (x"d"x)/(x^4 - 9)`

= I1 + I2

Now I1 = int x^3/(x^4 - 9)`

Put t = x4 – 9

So that 4x3 dx = dt.

Therefore I1 = `1/4 int "dt"/"t"`

= `1/4 log|"t"| + "C"_1`

= `1/4 log|x^4 - 9| + "C"_1`

Again, I2 = `int (x"d"x)/(x^4 - 9)`

Put x2 = u

So that 2x dx = du

Then I2 = `1/2 int "du"/("u"^2 - (3)^2)`

= `1/(2 xx 6) log|("u" - 3)/("u" + 3)| + "C"_2`

= `1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"_2`.

Thus I = I1 + I2

= `1/4 log|x^4 - 9| + 1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 154]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 16 | Page 154

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

Γ(n) is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×