Advertisements
Advertisements
Question
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Solution
We have I = `int (x^2 + x)/(x^4 - 9) "d"x`
= `int x^2/(x^4 - 9) "d"x + (x"d"x)/(x^4 - 9)`
= I1 + I2
Now I1 = int x^3/(x^4 - 9)`
Put t = x4 – 9
So that 4x3 dx = dt.
Therefore I1 = `1/4 int "dt"/"t"`
= `1/4 log|"t"| + "C"_1`
= `1/4 log|x^4 - 9| + "C"_1`
Again, I2 = `int (x"d"x)/(x^4 - 9)`
Put x2 = u
So that 2x dx = du
Then I2 = `1/2 int "du"/("u"^2 - (3)^2)`
= `1/(2 xx 6) log|("u" - 3)/("u" + 3)| + "C"_2`
= `1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"_2`.
Thus I = I1 + I2
= `1/4 log|x^4 - 9| + 1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"`
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`