मराठी

Evaluate d∫x2+xx4-9dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`

बेरीज

उत्तर

We have I = `int (x^2 + x)/(x^4 - 9) "d"x`

= `int x^2/(x^4 - 9) "d"x + (x"d"x)/(x^4 - 9)`

= I1 + I2

Now I1 = int x^3/(x^4 - 9)`

Put t = x4 – 9

So that 4x3 dx = dt.

Therefore I1 = `1/4 int "dt"/"t"`

= `1/4 log|"t"| + "C"_1`

= `1/4 log|x^4 - 9| + "C"_1`

Again, I2 = `int (x"d"x)/(x^4 - 9)`

Put x2 = u

So that 2x dx = du

Then I2 = `1/2 int "du"/("u"^2 - (3)^2)`

= `1/(2 xx 6) log|("u" - 3)/("u" + 3)| + "C"_2`

= `1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"_2`.

Thus I = I1 + I2

= `1/4 log|x^4 - 9| + 1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Solved Examples [पृष्ठ १५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Solved Examples | Q 16 | पृष्ठ १५४

संबंधित प्रश्‍न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×