Advertisements
Advertisements
प्रश्न
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
उत्तर
We have I = `int (x^2 + x)/(x^4 - 9) "d"x`
= `int x^2/(x^4 - 9) "d"x + (x"d"x)/(x^4 - 9)`
= I1 + I2
Now I1 = int x^3/(x^4 - 9)`
Put t = x4 – 9
So that 4x3 dx = dt.
Therefore I1 = `1/4 int "dt"/"t"`
= `1/4 log|"t"| + "C"_1`
= `1/4 log|x^4 - 9| + "C"_1`
Again, I2 = `int (x"d"x)/(x^4 - 9)`
Put x2 = u
So that 2x dx = du
Then I2 = `1/2 int "du"/("u"^2 - (3)^2)`
= `1/(2 xx 6) log|("u" - 3)/("u" + 3)| + "C"_2`
= `1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"_2`.
Thus I = I1 + I2
= `1/4 log|x^4 - 9| + 1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"`
APPEARS IN
संबंधित प्रश्न
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Γ(n) is