Advertisements
Advertisements
प्रश्न
पर्याय
`15/16`
`3/16`
`-3/16`
`-16/3`
उत्तर
`-16/3`
`I=int_0^1x/(1-x)^(5/4)dx`
Put, 1 - x = t ⇒ x = 1 - t
⇒ dx = -dt
x | 0 | 1 |
t | 1 | 0 |
`I=int_1^0((1-t)(-dt))/t^(5/4)`
`I=int_0^1(1-t)/t^(5/4)dt`
`I=int_0^1(t^(-5/4)-t^(-1/4))dt`
`I=[t^(-1/4)/(-1/4)-t^(3/4)/(3/4)]_0^1`
`I=-4-4/3`
`I=-16/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If f is an integrable function, show that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`