मराठी

Π / 2 ∫ 0 1 1 + Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]
बेरीज

उत्तर

\[Let I = \int_0^\frac{\pi}{2} \frac{1}{1 + cotx} d x .....................(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cot\left( \frac{\pi}{2} - x \right)} d x ...................\left[\text{Using }\int_0^a f\left( x \right) d x = \int_0^a f\left( a - x \right) d x \right]\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} d x ..............(2)\]

\[\text{Adding (1) and (2)}\]

\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + cotx} + \frac{1}{1 + \tan x} d x \]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan x + 1 + cotx}{\left( 1 + cotx \right)\left( 1 + \tan x \right)} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{1 + \tan x + cotx + \tan x cotx}dx\]

\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{2 + \tan x + cotx} dx\]

\[ = \int_0^\frac{\pi}{2} dx\]

\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]

\[Hence\ , I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 2 | पृष्ठ ९४

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

Γ(1) is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×