मराठी

D∫x9(4x2+1)6 dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.

पर्याय

  • `1/(5x)(4 + 1/x^2)^-5 + "C"`

  • `1/5(4 + 1/x^2)^-5 + "C"`

  • `1/(10x)(1 + 4)^-5 + "C"`

  • `1/10(1/x^2 + 4)^-5 + "C"`

MCQ
रिकाम्या जागा भरा

उत्तर

`int x^9/(4x^2 + 1)^6  "d"x` is equal to `1/10(1/x^2 + 4)^-5 + "C"`.

Explanation:

Let I = `int x^9/(4x^2 + 1)^6 "d"x`

= `int  x^9/(x^12(4 + 1/x^2)^6) "d"x`

= `int 1/(x^3(4 + 1/x^2)^6) "d"x`

Put `(4 + 1/x^2)` = t

⇒ `(-2)/x^3 "dt"` = dt

⇒ `"dx"/x^3 = - 1/2 "dt"`

∴ I = `- 1/2 int "dt"/"t"^6`

= `- 1/2 xx - 1/5 "t"^-5 + "C"`

= `1/10 "t"^-5 + "C"`

= `1/10(4 + 1/x^2)^-5 + "C"`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 52 | पृष्ठ १६७

संबंधित प्रश्‍न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×