Advertisements
Advertisements
प्रश्न
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
पर्याय
`1/(5x)(4 + 1/x^2)^-5 + "C"`
`1/5(4 + 1/x^2)^-5 + "C"`
`1/(10x)(1 + 4)^-5 + "C"`
`1/10(1/x^2 + 4)^-5 + "C"`
उत्तर
`int x^9/(4x^2 + 1)^6 "d"x` is equal to `1/10(1/x^2 + 4)^-5 + "C"`.
Explanation:
Let I = `int x^9/(4x^2 + 1)^6 "d"x`
= `int x^9/(x^12(4 + 1/x^2)^6) "d"x`
= `int 1/(x^3(4 + 1/x^2)^6) "d"x`
Put `(4 + 1/x^2)` = t
⇒ `(-2)/x^3 "dt"` = dt
⇒ `"dx"/x^3 = - 1/2 "dt"`
∴ I = `- 1/2 int "dt"/"t"^6`
= `- 1/2 xx - 1/5 "t"^-5 + "C"`
= `1/10 "t"^-5 + "C"`
= `1/10(4 + 1/x^2)^-5 + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`