Advertisements
Advertisements
प्रश्न
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
उत्तर
\[\int_{- \pi}^\pi x^{10} \sin^7 x d x\]
\[Let f\left( x \right) = x^{10} \sin^7 x\]
\[\text{Consider }f\left( - x \right) = \left( - x \right)^{10} \sin^7 \left( - x \right) = - x^{10} \sin^7 x = - f\left( x \right)\]
Hence f(x) is an odd function
Therefore
\[ \int_{- \pi}^\pi x^{10} \sin^7 x d x = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: