Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\pi \frac{x \sin x}{1 + \sin x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \sin\left( \pi - x \right)} dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \sin x} d x ...................(2)\]
\[\text{Adding (1) and (2) we get} \]
\[2I = \int_0^\pi \left( x + \pi - x \right)\frac{\sin x}{1 + \sin x} d x \]
\[ = \int_0^\pi \frac{\pi \sin x}{1 + \sin x} d x\]
\[ = \pi \int_0^\pi \frac{1 + sinx - 1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\left( 1 + sinx \right)\left( 1 - sinx \right)}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{1 - \sin^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\cos^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \left( \sec^2 x - \sec x \tan x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \left[ tanx - secx \right]_0^\pi \]
\[ = \pi^2 - \pi\left( 0 + 1 - 0 + 1 \right)\]
\[ = \pi^2 - 2\pi\]
\[Hence\ I = \pi\left( \frac{\pi}{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
If f is an integrable function, show that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(1) is