मराठी

Π ∫ 0 X Sin X 1 + Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]
बेरीज

उत्तर

\[Let I = \int_0^\pi \frac{x \sin x}{1 + \sin x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \sin\left( \pi - x \right)} dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \sin x} d x ...................(2)\]
\[\text{Adding (1) and (2) we get} \]
\[2I = \int_0^\pi \left( x + \pi - x \right)\frac{\sin x}{1 + \sin x} d x \]
\[ = \int_0^\pi \frac{\pi \sin x}{1 + \sin x} d x\]
\[ = \pi \int_0^\pi \frac{1 + sinx - 1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{1}{1 + sinx}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\left( 1 + sinx \right)\left( 1 - sinx \right)}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{1 - \sin^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \frac{\left( 1 - sinx \right)}{\cos^2 x}dx\]
\[ = \pi \int_0^\pi dx - \pi \int_0^\pi \left( \sec^2 x - \sec x \tan x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \left[ tanx - secx \right]_0^\pi \]
\[ = \pi^2 - \pi\left( 0 + 1 - 0 + 1 \right)\]
\[ = \pi^2 - 2\pi\]
\[Hence\ I = \pi\left( \frac{\pi}{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 15 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int_0^1 | x\sin \pi x | dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Γ(1) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×