मराठी

∫ 2 0 2 X [ X ] D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^2 2x\left[ x \right]dx\]
बेरीज

उत्तर

\[\int_0^2 2x\left[ x \right]dx\]
\[ = \int_0^1 2x\left[ x \right]dx + \int_1^2 2x\left[ x \right]dx\]
\[ = \int_0^1 2x \times 0dx + \int_1^2 2x \times 1dx .................\left[ \left[ x \right] = \begin{cases}0, & 0 \leq x < 1 \\ 1, & 1 \leq x < 2\end{cases} \right]\]
\[ = 0 + 2 \int_1^2 xdx\]
\[ = \left.2 \times \frac{x^2}{2}\right|_1^2 \]
\[ = 4 - 1\]
\[ = 3\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.3 | Q 27 | पृष्ठ ५६

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^4 x dx\]


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×