Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^1 \left( x e^{2x} + \sin \frac{\ pix}{2} \right) d x . Then, \]
\[I = \int_0^1 x e^{2x} d x + \int_0^1 \sin \frac{\ pix}{2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \int_0^1 1 \frac{e^{2x}}{2} dx + \left[ - \frac{\cos \frac{\ pix}{2}}{\frac{\pi}{2}} \right]_0^1 \]
\[ \Rightarrow I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \left[ \frac{e^{2x}}{4} \right]_0^1 - \frac{2}{\pi} \left[ \cos \frac{\ pix}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]
\[ \Rightarrow I = \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`