Advertisements
Advertisements
प्रश्न
उत्तर
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x \sin^2 x}}dx\]
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx\]
\[ = - \frac{\pi}{2} \times 2 \int_0^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx .................\left[ f\left( - x \right) = \sqrt{\cos\left( - x \right)}\left| \sin\left( - x \right) \right| = \sqrt{\cos x}\left| - \sin x \right| = \sqrt{\cos x}\left| \sin x \right| = f\left( x \right) \right]\]
\[ = - \pi \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{\cos x}\left( 1 - \cos^2 x \right)}dx\]
\[ = 2\pi \int_1^0 \frac{dz}{1 - z^4}\]
\[ = 2\pi \int_1^0 \frac{dz}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)}\]
\[ \Rightarrow 1 = A\left( 1 + z \right)\left( 1 + z^2 \right) + B\left( 1 - z \right)\left( 1 + z^2 \right) + \left( Cz + D \right)\left( 1 - z \right)\left( 1 + z \right)\]
\[1 = A + B + D\]
\[ \Rightarrow D = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}\]
\[ \Rightarrow \frac{1}{4} - \frac{1}{4} + C = 0\]
\[ \Rightarrow C = 0\]
\[ = 2\pi \int_1^0 \frac{\frac{1}{4}}{1 - z}dz + 2\pi \int_1^0 \frac{\frac{1}{4}}{1 + z}dz + 2\pi \int_1^0 \frac{\frac{1}{2}}{1 + z^2}dz\]
\[ = \left.\frac{2\pi}{4} \times \frac{\log\left( 1 - z \right)}{- 1}\right|_1^0 + \left.\frac{2\pi}{4} \times \log\left( 1 + z \right)\right|_1^0 + \left.\frac{2\pi}{2} \times \tan^{- 1} z\right|_1^0 \]
\[ = - \frac{\pi}{2}\left( \log1 - \log0 \right) + \frac{\pi}{2}\left( \log1 - \log2 \right) + \pi\left( \tan^{- 1} 0 - \tan^{- 1} 1 \right)\]
\[ = - \frac{\pi}{2}\left[ 0 - \left( - \infty \right) \right] + \frac{\pi}{2}\left( 0 - \log2 \right) + \pi\left( 0 - \frac{\pi}{4} \right)\]
\[ = - \infty - \frac{\pi}{2}\log2 - \frac{\pi^2}{4}\]
\[ = - \infty\]
Notes
The answer does not matches with the answer provided for the question.
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`