मराठी

The Value of π ∫ − π Sin 3 X Cos 2 X D X is ,π 4 2,π 4 4, 0,None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 

पर्याय

  • \[\frac{\pi^4}{2}\]
  • \[\frac{\pi^4}{4}\]
  •  0

  • none of these

MCQ

उत्तर

\[\int_{- \pi}^\pi \sin^3 x \cos^2 x d x\]
\[ = \int_{- \pi}^\pi \sin x\left( 1 - \cos^2 x \right) \cos^2 x dx\]
\[Let\ \cos x = t, then - \sin x dx = dt, \]
\[When\, x = - \pi, t = - 1, x = \pi, t = - 1\]
\[\text{Therefore the integral becomes}\]
\[ \int_{- 1}^{- 1} - \left( 1 - t^2 \right) t^2 dt\]
\[ = 0\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 23 | पृष्ठ ११९

संबंधित प्रश्‍न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_0^2 2x\left[ x \right]dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×