Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
पर्याय
- \[\frac{\pi^4}{2}\]
- \[\frac{\pi^4}{4}\]
0
none of these
उत्तर
0
\[\int_{- \pi}^\pi \sin^3 x \cos^2 x d x\]
\[ = \int_{- \pi}^\pi \sin x\left( 1 - \cos^2 x \right) \cos^2 x dx\]
\[Let\ \cos x = t, then - \sin x dx = dt, \]
\[When\, x = - \pi, t = - 1, x = \pi, t = - 1\]
\[\text{Therefore the integral becomes}\]
\[ \int_{- 1}^{- 1} - \left( 1 - t^2 \right) t^2 dt\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`