Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
उत्तर
We have,
\[I = \int_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)}{a^2 \cos^2 \left( \pi - x \right) + b^2 \sin^2 \left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ...............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \frac{x + \pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]
\[ = \pi \int_0^\pi \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]
\[ = \pi \int_0^\pi \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ...............\left(\text{Dividing numerator and denominator by }\cos^2 x \right)\]
\[ = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ..............\left[\text{Using }\int_0^{2a} f\left( x \right)dx = \int_0^a f\left( x \right)dx + \int_0^a f\left( 2a - x \right)dx \right]\]
\[\text{Putting }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to \infty \]
\[ \therefore 2I = 2\pi \int_0^\frac{\pi}{2} \frac{dt}{a^2 + b^2 t^2}\]
\[ \Rightarrow I = \frac{\pi}{b^2} \int_0^\frac{\pi}{2} \frac{dt}{\frac{a^2}{b^2} + t^2}\]
\[ = \frac{\pi}{b^2} \times \frac{b}{a} \left[ \tan^{- 1} \left( \frac{bt}{a} \right) \right]_0^\infty \]
\[ = \frac{\pi}{ab}\left[ \frac{\pi}{2} - 0 \right]\]
\[ = \frac{\pi}{ab} \times \frac{\pi}{2}\]
\[ = \frac{\pi^2}{2ab} \]
\[\text{Hence }I = \frac{\pi^2}{2ab}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`