Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{\tan^{- 1} x}{1 + x^2} d\ x . Then, \]
\[Let\ \tan^{- 1} x = t . Then, \frac{1}{1 + x^2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = 1, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^\frac{\pi}{4} t dt\]
\[ \Rightarrow I = \left[ \frac{t^2}{2} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{\pi^2}{32}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.