मराठी

1 ∫ 0 Tan − 1 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

उत्तर

\[Let\ I = \int_0^1 \frac{\tan^{- 1} x}{1 + x^2} d\ x . Then, \]
\[Let\ \tan^{- 1} x = t . Then, \frac{1}{1 + x^2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = 1, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^\frac{\pi}{4} t dt\]
\[ \Rightarrow I = \left[ \frac{t^2}{2} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{\pi^2}{32}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 30 | पृष्ठ ३९

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×