Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \sin^3 x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \sin x \sin^2 x\ d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sin x \left( 1 - \cos^2 x \right) dx\]
\[Let u = \cos x, du = - \sin\ x\ dx\]
\[ \therefore I = \int - \left( 1 - u^2 \right) du\]
\[ \Rightarrow I = \left[ \frac{u^3}{3} - u \right]\]
\[ \Rightarrow I = \left[ \frac{\cos^3 x}{3} - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{1}{3} + 1\]
\[ \Rightarrow I = \frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.