Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \frac{\cos x}{1 + \sin^2 x} d x\]
\[Let \sin x = t,\text{ then }\cos x dx = dt\]
\[\text{When }x \to 0 ; t \to 0\]
\[\text{And }x \to \frac{\pi}{2}; t \to 1\]
Therefore the integral becomes
\[ \int_0^1 \frac{dt}{1 + t^2}\]
\[ = \left[ \tan^{- 1} x \right]_0^1 \]
\[ = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate :
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is