Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} d x . Then, \]
\[Let\ \cos x = t . Then, - \sin\ x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \frac{\pi}{2}, t = 0\]
\[ \therefore I = - \int_1^0 \frac{t dt}{t^2 + 3t + 2}\]
\[ \Rightarrow I = \int_1^0 \frac{- t dt}{\left( t + 2 \right)\left( t + 1 \right)}\]
\[ \Rightarrow I = \int_1^0 \left( \frac{1}{\left( t + 1 \right)} - \frac{2}{\left( t + 2 \right)} \right) dt\]
\[ \Rightarrow I = \left[ \log \left( t + 1 \right) - 2 \log \left( t + 2 \right) \right]_1^0 \]
\[ \Rightarrow I = \left[ \log \frac{\left( t + 1 \right)}{\left( t + 2 \right)^2} \right]_0^1 \]
\[ \Rightarrow I = \left[ \log \left( \frac{1}{4} \right) - \log \left( \frac{2}{9} \right) \right]_0^1 \]
\[ \Rightarrow I = \log \frac{9}{8}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Prove that:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Find: `int logx/(1 + log x)^2 dx`