मराठी

Π / 2 ∫ 0 Sin X Cos X Cos 2 X + 3 Cos X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} d x . Then, \]
\[Let\ \cos x = t . Then, - \sin\ x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \frac{\pi}{2}, t = 0\]
\[ \therefore I = - \int_1^0 \frac{t dt}{t^2 + 3t + 2}\]
\[ \Rightarrow I = \int_1^0 \frac{- t dt}{\left( t + 2 \right)\left( t + 1 \right)}\]
\[ \Rightarrow I = \int_1^0 \left( \frac{1}{\left( t + 1 \right)} - \frac{2}{\left( t + 2 \right)} \right) dt\]
\[ \Rightarrow I = \left[ \log \left( t + 1 \right) - 2 \log \left( t + 2 \right) \right]_1^0 \]
\[ \Rightarrow I = \left[ \log \frac{\left( t + 1 \right)}{\left( t + 2 \right)^2} \right]_0^1 \]
\[ \Rightarrow I = \left[ \log \left( \frac{1}{4} \right) - \log \left( \frac{2}{9} \right) \right]_0^1 \]
\[ \Rightarrow I = \log \frac{9}{8}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 56 | पृष्ठ ४०

संबंधित प्रश्‍न

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×