Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[\int_0^\pi xf\left( \sin x \right)dx = \int_0^\pi \left( \pi - x \right)f\left[ \sin\left( \pi - x \right) \right]dx .................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \int_0^\pi \left( \pi - x \right)f\left( \sin x \right)dx\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \pi \int_0^\pi f\left( \sin x \right)dx - \int_0^\pi xf\left( \sin x \right)dx\]
\[ \Rightarrow 2 \int_0^\pi xf\left( \sin x \right)dx = \pi \int_0^\pi f\left( \sin x \right)dx\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(2a − x) = −f(x), prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`