Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^2 x\sqrt{2 - x} d x\]
\[ = \int_0^2 \left( 2 - x \right)\sqrt{2 - 2 + x} d x\]
\[ = \int_0^2 \left( 2 - x \right)\sqrt{x} d x\]
\[ = \int_0^2 \left( 2\sqrt{x} - x\sqrt{x} \right) dx\]
\[ = \int_0^2 \left( 2 x^\frac{1}{2} - x^\frac{3}{2} \right) dx\]
\[ = \left[ 2\frac{x^\frac{3}{2}}{\frac{3}{2}} - \frac{x^\frac{5}{2}}{\frac{5}{2}} \right]_0^2 \]
\[ = \left[ \frac{4}{3} x^\frac{3}{2} - \frac{2}{5} x^\frac{5}{2} \right]_0^2 \]
\[ = \frac{8\sqrt{2}}{3} - \frac{8\sqrt{2}}{5} \]
`=(5xx8sqrt2)/(3xx5)-(3xx8sqrt2)/(5xx3)`
`=(16sqrt2)/15`
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
Evaluate each of the following integral:
Solve each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is