मराठी

Π / 2 ∫ 0 Log Tan X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]
बेरीज

उत्तर

\[\text{Let, }I = \int_0^\frac{\pi}{2} \log \tan x\ dx ...................(1)\]

\[ = \int_0^\frac{\pi}{2} \log \tan\left( \frac{\pi}{2} - x \right) dx ....................\left[ Using, \int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]

\[ = \int_0^\frac{\pi}{2} \log cot x\ dx ....................(2)\]

\[\text{Adding (1) and (2) we get}\]

\[2I = \int_0^\frac{\pi}{2} \log \tan x d x + \int_0^\frac{\pi}{2} \log cotx\ dx\]

\[ = \int_0^\frac{\pi}{2} \log\left( \tan x \times cotx \right)dx\]

\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]

\[\text{Hence, }I = 0\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Very Short Answers [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Very Short Answers | Q 14 | पृष्ठ ११५

संबंधित प्रश्‍न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×