Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let, }I = \int_0^\frac{\pi}{2} \log \tan x\ dx ...................(1)\]
\[ = \int_0^\frac{\pi}{2} \log \tan\left( \frac{\pi}{2} - x \right) dx ....................\left[ Using, \int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ = \int_0^\frac{\pi}{2} \log cot x\ dx ....................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \log \tan x d x + \int_0^\frac{\pi}{2} \log cotx\ dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \tan x \times cotx \right)dx\]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[\text{Hence, }I = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.