Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{1 + \cos x}} d x\]
\[Let 1 + \cos x = t, then - \sin x dx = dt\]
\[When, x \to 0, t \to 2 and x \to \frac{\pi}{2}, t \to 1\]
Therefore, the integral becomes
\[ \int_2^1 \frac{- 1}{\sqrt{t}}dt\]
\[ = \int_1^2 \frac{1}{\sqrt{t}}dt\]
\[ = 2 \left[ \sqrt{t} \right]_1^2 \]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`