Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ x^2 = t\ . Then, 2x\ dx\ = dt\]
\[When\ x = 2, t = 4 and\ x\ = 4, t = 16 . \]
\[ \therefore I = \int_2^4 \frac{x}{x^2 + 1} d x\]
\[ \Rightarrow I = \int_4^{16} \frac{1}{2}\frac{dt}{t + 1}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \log \left( t + 1 \right) \right]_4^{16} \]
\[ \Rightarrow I = \frac{1}{2} \log 17 - \frac{1}{2} \log 5\]
\[ \Rightarrow I = \frac{1}{2} \log \frac{17}{5}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.