Advertisements
Advertisements
प्रश्न
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
उत्तर
\[Let, I = \int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} d x ...............(1)\]
\[ = \int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{a - a + x}} d x\]
\[ = \int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} d x\]
\[ \Rightarrow I = \int_0^a \frac{\sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} d x.................(2)\]
Adding (1) and (2)
\[2I = \int_0^a \left[ \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} + \frac{\sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} \right] d x\]
\[ = \int_0^a dx\]
\[ = \left[ x \right]_0^a \]
\[ = a\]
\[\text{Hence, }I = \frac{a}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`