Advertisements
Advertisements
प्रश्न
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
उत्तर
\[Let, I = \int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} d x ...............(1)\]
\[ = \int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{a - a + x}} d x\]
\[ = \int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} d x\]
\[ \Rightarrow I = \int_0^a \frac{\sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} d x.................(2)\]
Adding (1) and (2)
\[2I = \int_0^a \left[ \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} + \frac{\sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} \right] d x\]
\[ = \int_0^a dx\]
\[ = \left[ x \right]_0^a \]
\[ = a\]
\[\text{Hence, }I = \frac{a}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.