Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
योग
उत्तर
Let f(x = `log (2 - x)/(2 + x))`
f(– x) = `log ((2 - (- x))/(2 + (– x)))`
= `log ((2 + x)/(2 - x))`
= `log ((2 - x)/(2 + x))^-1`
= `- log ((2 - x)/(2 + x))`
⇒ (fx) = – f(x)
∴ f(x) is an odd function
∴ `int_(-1)^1 log ((2 - x)/(2 + x)) "d"x` = 0
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]
\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
Evaluate each of the following integral:
\[\int_e^{e^2} \frac{1}{x\log x}dx\]
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\] is equal to
\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Find: `int logx/(1 + log x)^2 dx`